Partial Differential Equations: Resit Exam

Room 5118.-152, Thursday 23 June 2016, 09:00-12:00
Duration: 3 hours

- Solutions should be complete and clearly present your reasoning.
- 10 points are "free". There are 6 questions and the total number of points is 100 . The final exam grade is the total number of points divided by 10 .
- Do not forget to very clearly write your full name and student number on the envelope.
- Do not seal the envelope.

Question 1 (14 points)

Consider the equation

$$
\begin{equation*}
2 y u_{x}+e^{x} u_{y}=0, \tag{1}
\end{equation*}
$$

where $u=u(x, y)$.
(a) (10 points) Find the general solution of Eq. (1).

Solution

We consider the equation for the characteristic curves

$$
\frac{d x}{d y}=\frac{2 y}{e^{x}}
$$

which can be separated as

$$
e^{x} d x=2 y d y,
$$

and directly integrated to

$$
e^{x}=y^{2}+C .
$$

Therefore $C=e^{x}-y^{2}$ is the constant of integration and the general solution is

$$
u=f\left(e^{x}-y^{2}\right)
$$

(b) (4 points) Find the solution of Eq. (1) with the auxiliary condition $u(0, y)=y^{2}$.

Solution

For $u(0, y)=y^{2}$ we have $u(0, y)=f\left(1-y^{2}\right)=y^{2}$. Therefore,

$$
f(x)=1-x,
$$

and this implies

$$
u(x, y)=1-e^{x}+y^{2} .
$$

Question 2 (14 points)

Consider the equation

$$
\begin{equation*}
u_{x x}+2 u_{x y}-3 u_{y y}=0 . \tag{2}
\end{equation*}
$$

(a) (4 points) What is the type (elliptic / hyperbolic / parabolic) of Eq. (2)? Explain your answer.

Solution

We have $a_{11}=1, a_{12}=1$, and $a_{22}=-3$. Therefore

$$
a_{11} a_{22}=-3<1=a_{12}^{2} .
$$

Therefore the equation is hyperbolic.
(b) (10 points) Find a linear transformation $(x, y) \rightarrow(s, t)$ that reduces Eq. (2) to one of the standard forms $u_{s s}+u_{t t}=0, u_{s s}-u_{t t}=0$, or $u_{s s}=0$. Express the "old" coordinates (x, y) in term of the "new" coordinates (s, t). Which one of the standard forms is the correct one?

Solution

We complete the square in

$$
\mathcal{L}=\partial_{x}^{2}+2 \partial_{x} \partial_{y}-3 \partial_{y}^{2}=\left(\partial_{x}+\partial_{y}\right)^{2}-\left(2 \partial_{y}\right)^{2} .
$$

Define

$$
\partial_{s}=\partial_{x}+\partial_{y}, \quad \partial_{t}=2 \partial_{y} .
$$

Then, using the transpose of the linear mapping, we have

$$
x=s, \quad y=s+2 t,
$$

and the corresponding standard form is $u_{s s}-u_{t t}=0$.

Question 3 (16 points)

Consider the eigenvalue problem $-X^{\prime \prime}(x)=\lambda X(x), 0 \leq x \leq 2 \pi$, with boundary conditions $X(0)=0$ and $X^{\prime}(2 \pi)=0$.
(a) (6 points) Show that the given boundary conditions are of the form

$$
\begin{aligned}
& \alpha_{1} X(a)+\beta_{1} X(b)+\gamma_{1} X^{\prime}(a)+\delta_{1} X^{\prime}(b)=0, \\
& \alpha_{2} X(a)+\beta_{2} X(b)+\gamma_{2} X^{\prime}(a)+\delta_{2} X^{\prime}(b)=0,
\end{aligned}
$$

and that if a function $f(x)$ satisfies the given boundary conditions then

$$
\left.f(x) f^{\prime}(x)\right|_{0} ^{2 \pi}=0
$$

What can you conclude from these facts about the eigenvalues in this problem?

Solution

To show that the given periodic boundary conditions are of the form

$$
\begin{align*}
& \alpha_{1} X(a)+\beta_{1} X(b)+\gamma_{1} X^{\prime}(a)+\delta_{1} X^{\prime}(b)=0, \\
& \alpha_{2} X(a)+\beta_{2} X(b)+\gamma_{2} X^{\prime}(a)+\delta_{2} X^{\prime}(b)=0, \tag{3}
\end{align*}
$$

take $a=0, b=2 \pi, \gamma_{1}=\delta_{1}=\alpha_{2}=\beta_{2}=\beta_{1}=\gamma_{2}=0, \alpha_{1}=\delta_{2}=1$.
We have that

$$
\left.f(x) f^{\prime}(x)\right|_{0} ^{2 \pi}=f(2 \pi) f^{\prime}(2 \pi)-f(0) f^{\prime}(0)=f(2 \pi) \cdot 0-0 \cdot f^{\prime}(0)=0 .
$$

We know that if the periodic boundary condition are in the form of Eq. (3) and if $\left.f(x) f^{\prime}(x)\right|_{0} ^{2 \pi} \leq$ 0 then there are no negative eigenvalues.
(b) (10 points) It is given that all eigenvalues are real. Prove that they are given by $\lambda_{n}=$ $(2 n+1)^{2} / 16, n=0,1,2, \ldots$ and give the corresponding eigenfunctions. Check whether $\lambda=0$ is an eigenvalue.

Solution

Since the eigenvalues are real and we know that there are no negative eigenvalues we have to consider the cases $\lambda=\beta^{2}>0$ and $\lambda=0$.
For $\lambda=0$ we have $X^{\prime \prime}=0$ which gives the solution

$$
X_{0}(x)=A x+B .
$$

Since $X_{0}(0)=0$ we find that $B=0$. The equation $X_{0}^{\prime}(2 \pi)=0$ gives $A=0$. Therefore, $X_{0}(x)=0$ which must be excluded.
For $\lambda=\beta^{2}>0$ we get the solution

$$
X(x)=A \sin (\beta x)+B \cos (\beta x) .
$$

The boundary condition $X(0)=0$ gives

$$
B=0 .
$$

The boundary condition $X^{\prime}(2 \pi)=0$ gives

$$
\beta A \cos (2 \pi \beta)=0 .
$$

Since A must be non-zero and since $\beta>0$ then we have $\cos (2 \pi \beta)=0$ which gives

$$
2 \pi \beta_{n}=n \pi+\frac{\pi}{2}=\frac{2 n+1}{2} \pi, \quad n=0,1,2, \ldots,
$$

so

$$
\beta_{n}=\frac{2 n+1}{4}, \quad n=0,1,2, \ldots
$$

The eigenvalues are

$$
\lambda_{n}=\frac{(2 n+1)^{2}}{16}, \quad n=0,1,2, \ldots .
$$

The corresponding eigenfunctions have the form

$$
\sin \left(\beta_{n} x\right)=\sin \left(\frac{2 n+1}{4} x\right) .
$$

Question 4 (14 points)

Consider the Laplace equation

$$
\begin{equation*}
u_{x x}+u_{y y}=0, \tag{4}
\end{equation*}
$$

in the domain $0<x<\pi, 0<y<1$.
(a) (4 points) Separate variables using a solution of the form $u(x, y)=X(x) Y(y)$ and find the ordinary differential equations satisfied by $X(x)$ and by $Y(y)$.

Solution

We have

$$
X^{\prime \prime} Y+X Y^{\prime \prime}=0
$$

therefore

$$
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-\lambda .
$$

The two equations are

$$
-X^{\prime \prime}=\lambda X, \quad Y^{\prime \prime}=\lambda Y .
$$

(b) (10 points) Find the solution $u(x, y)$ of Eq. (4) which satisfies the boundary conditions $u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin (n x)$ and $u(x, 1)=u(0, y)=u(2 \pi, y)=0$.
It is given that the eigenvalues for the problem $-Z^{\prime \prime}=\mu Z$ with $Z(0)=Z(c)=0$ are $\mu_{n}=n^{2} \pi^{2} / c^{2}$, for $n=1,2,3, \ldots$, and the corresponding eigenfunctions are $\psi_{n}=\sin (n \pi x / c)$.

Solution

We have

$$
-X^{\prime \prime}=\lambda X, \quad X(0)=X(a)=0,
$$

and therefore the eigenvalues are

$$
\lambda_{n}=n^{2}, \quad n=1,2,3, \ldots
$$

The corresponding eigenfunctions are

$$
\sin (n x) \text {. }
$$

Moreover, we have

$$
Y^{\prime \prime}=\lambda_{n} Y, \quad Y(b)=0 .
$$

This means

$$
Y_{n}=A_{n} \cosh (n y)+B_{n} \sinh (n y),
$$

and

$$
A_{n} \cosh (n)+B_{n} \sinh (n)=0,
$$

implying

$$
A_{n}=-B_{n} \tanh (n) .
$$

Finally

$$
Y_{n}=B_{n}(-\tanh (n) \cosh (n y)+\sinh (n y)) .
$$

The general solution is

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \sin (n x)(-\tanh (n) \cosh (n y)+\sinh (n y)) .
$$

For $y=0$ we get

$$
u(x, 0)=\sum_{n=1}^{\infty}-B_{n} \tanh (n) \sin (n x)=\sum_{n=1}^{\infty} c_{n} \sin (n x),
$$

thus,

$$
B_{n}=-c_{n} / \tanh (n) .
$$

The final solution is

$$
u(x, y)=\sum_{n=1}^{\infty} c_{n} \sin (n x) \frac{\sinh (n) \cosh (n y)-\cosh (n) \sinh (n y)}{\sinh (n)} .
$$

Question 5 (16 points)

Consider the function

$$
f(x)=\left\{\begin{aligned}
1, & \text { for } 0 \leq x<1 / 2 \\
-1, & \text { for } 1 / 2 \leq x \leq 1,
\end{aligned}\right.
$$

and its Fourier cosine series

$$
\frac{b_{0}}{2}+\sum_{n=1}^{\infty} b_{n} \cos (n \pi x) .
$$

(a) (4 points) Check if the Fourier series converges to $f(x)$ in the L^{2} sense in the interval $[0,1]$.

Solution

The Fourier series converges because the integral

$$
\|f\|^{2}=\int_{0}^{1}|f(x)|^{2} d x
$$

is finite.
(b) (6 points) What is the pointwise limit of the Fourier series for $x \in[-2,2]$?

Solution

To answer this question we must look at the even-periodic extension $f_{\text {ext }}(x)$ of $f(x)$. The even extension is,

$$
f_{\text {even }}(x)=\left\{\begin{aligned}
-1, & \text { for }-1 \leq x \leq-1 / 2 \\
1, & \text { for }-1 / 2<x<1 / 2 \\
-1, & \text { for } 1 / 2 \leq x \leq 1
\end{aligned}\right.
$$

The periodic extension is obtained by repeating the graph of $f_{\text {even }}(x), x \in[-1,1]$ with period 2 , as in the graph below.

Therefore the even-periodic extension $f_{\text {ext }}(x)$ is discontinuous at $k+1 / 2, k \in \mathbb{Z}$. For $x \in[-2,2]$ we have discontinuities at $x \in D$ where $D=\{-1.5,-0.5,0.5,1.5\}$.
Therefore the pointwise limit of the Fourier series equals $f_{\text {ext }}(x)$ for $x \in[-2,2] \backslash D$ and it equals $\left[f_{\text {ext }}\left(x^{+}\right)+f_{\text {ext }}\left(x^{-}\right)\right] / 2$ for $x \in D$. At each $x \in D$ the two side-limits are ± 1 so $\left[f_{\text {ext }}\left(-1^{+}\right)+f_{\text {ext }}\left(-1^{-}\right)\right] / 2=0$. Therefore at each $x \in D$ the pointwise limit of the Fourier series is 0 .
(c) (2 points) Draw the graph of the Fourier series for $x \in[-2,2]$.

Solution

(d) (4 points) At which points in $[0,1]$ does the Gibbs phenomenon appear in the Fourier series and what is the overshoot at these points?

Solution

The Gibbs phenomenon appears at the points in $[0,1]$ where $f_{\text {ext }}(x)$ is discontinuous, that is, at $x=1 / 2$. The discontinuity jump is $f_{\text {ext }}\left(1^{+}\right)-f_{\text {ext }}\left(1^{-}\right)=-2$, which means that the overshoot is $\simeq 0.09 \times 2=0.18$.

Question 6 (16 points)

(a) (4 points) Suppose that u is a harmonic function in the disk $D=\{r<1\}$ and that for $r=1$ we have $u(1, \theta)=1+3 \cos \theta+2 \sin 3 \theta$. Find the solution $u(r, \theta)$ for $r \leq 1$.

It is given that the solution to the Laplace equation inside the disk $r<a$ has the form

$$
u(r, \theta)=\frac{C_{0}}{2}+\sum_{n=1}^{\infty} \frac{r^{n}}{a^{n}}\left(C_{n} \cos (n \theta)+D_{n} \sin (n \theta)\right) .
$$

Solution

Setting $r=1$ in the expression for $u(r, \theta)$ (where $a=1$) we find

$$
u(1, \theta)=\frac{C_{0}}{2}+\sum_{n=1}^{\infty} C_{n} \cos (n \theta)+D_{n} \sin (n \theta),
$$

Comparing with the given expression for $u(1, \theta)$ we get $C_{0}=2, C_{1}=3, D_{3}=2$, and all other coefficients are zero. Therefore the solution is

$$
u(r, \theta)=\frac{C_{0}}{2}+C_{1} r \cos \theta+D_{3} r^{3} \sin 3 \theta=1+3 r \cos \theta+2 r^{3} \sin 3 \theta
$$

(b) (12 points) Consider a solution $w(x, t)$ of the wave equation $w_{t t}=w_{x x}$ for x in $[0, \ell]$ and homogeneous Neumann boundary conditions, $w_{x}(0, t)=w_{x}(\ell, t)=0$. Show that the energy,

$$
E(t)=\frac{1}{2} \int_{0}^{\ell}\left(w_{t}^{2}+w_{x}^{2}\right) d x
$$

is constant. If $w(x, 0)=3 \ell x^{2}-2 x^{3}$ and $w_{t}(x, 0)=0$ show that $E(t)=(6 / 10) \ell^{5}$ for all $t \geq 0$.

Solution

We have that

$$
\frac{d E}{d t}=\int_{0}^{\ell}\left(w_{t} w_{t t}+w_{x} w_{x t}\right) d x=\int_{0}^{\ell}\left(w_{t} w_{x x}+w_{x} w_{x t}\right) d x=\int_{0}^{\ell}\left(w_{t} w_{x}\right)_{x} d x=\left.w_{t} w_{x}\right|_{0} ^{\ell}=0
$$

For $t=0$ we have

$$
E(0)=\frac{1}{2} \int_{0}^{\ell}\left(w_{t}^{2}+w_{x}^{2}\right) d x=\frac{1}{2} \int_{0}^{\ell} w_{x}^{2} d x
$$

since $w_{t}=0 . \quad$ Moreover,

$$
w_{x}=6\left(\ell x-x^{2}\right)
$$

so

$$
E(0)=18 \int_{0}^{\ell}\left(\ell^{2} x^{2}+x^{4}-2 \ell x^{3}\right) d x=18\left(\frac{\ell^{5}}{3}+\frac{\ell^{5}}{5}-\frac{\ell^{5}}{2}\right)=\frac{6 \ell^{5}}{10}
$$

Since $d E / d t=0$ we conclude $E(t)=E(0)=(6 / 10) \ell^{5}$ for all $t \geq 0$.

End of the exam (Total: 90 points)

